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Introduction and Motivation

1. Introduction and Motivation

PAGE .I!K.ANK NOT FI_.MEID

1

Many organizations are contributing to the AXAF calibration effort and, in the course

of their work, often require data on the expected performance of the AXAF high resolution

mirror assembly (HRMA) to properly plan or assess calibration activities. In an effort to

provide such information to the AXAF project, the SAO Mission Support Team (MST) has

decided to prepare the HRMA Calibration Handbook. This document, consisting of hardcopy

printout of explanatory text, figures, and tables, represents one incarnation of the HRMA

Calibration Handbook. However, as we have envisioned it, the Handbook also consists of

electronic versions of this hardcopy printout (in the form of postscript files), the individual

scripts which produced the various figures and the associated input data, the model raytrace

files, and all scripts, parameter files, and input data necessary to generate the raytraces.

These data are all available electronically as either ASCII or FITS files. The Handbook is

intended to be a living document and will be updated as new information and/or fabrication

data on the HRMA are obtained, or when the need for additional results are indicated. We

also intend that the Handbook should document the status of our HRMA model in order

to facilitate comparison with future versions of both our model and raytrace models being

developed by other organizations on the AXAF Team. Finally we note that SAO provided a

similar document before the VETA-I test (Hughes and Podgorski 1990) which proved to be

quite valuable to the planning and execution of that test.

The SAO MST is developing a high fidelity HRMA model, consisting of analytical and

numerical calculations, computer software, and databases of fundamental physical constants,

laboratory measurements, configuration data, finite element models, AXAF assembly data,

and so on. This model serves as the basis for the simulations presented in the Handbook.

The "core" of the model is the raytrace package OSAC (Glenn & Noll 1982, version 5.0),

which we have substantially modified and now refer to as SAOsac.

One major structural modification to the software has been to utilize the UNIX binary

pipe data transport mechanism for passing rays between program modules. This change has

made it possible to simulate rays which are distributed randomly over the entrance aperture

of the telescope. It has also resulted in a highly efficient system for tracing large numbers of

rays. In one application to date (the analysis of VETA-I ring focus data) we have employed
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Description of Model

2 × 107 rays (Zhao et al. 1994), a substantial improvement over the limit of 1 × 104 rays in

the original OSAC module.

A second major modification is the manner in which SAOsac incorporates low spatial fre-

quency surface errors into the geometric raytrace. The original osAc included the ability to

use Legendre-Fourier polynomials to describe deviations from the basic optical prescription.

To this we have added bicubic splines to address a deficiency in the handling of the sharper

deformations in the areas of mirror support pads. SAO has developed software (TRANS-

FIT) to translate the most common Finite Element Analysis models into these forms for

incorporation into the raytrace program.

2. Description of Model

A complete HRMA model consists of several components:

• a finite element model (FEM) of the mirror support structure and an analysis of

the deformations induced in the mirrors by it

• mechanical models of the thermal pre- and post- collimators

• mechanical models of the ghost ray baffles

• mechanical models of the Central Aperture Plate (CAP)

• a prescription for the gross mirror geometry

• a model of the mirror surface imperfections (e.g., surface micro-roughness) and

alignment errors (e.g., relative tilts between parabola-hyperbola mirror pairs)

• models of surface contamination (e.g., dust)

Our intention for this first release of the HRMA Calibration Handbook is to focus on the

deformations induced in the HrtMA by the 1-g off-loaded mount at the XRCF as calculated

by EKC. Thus the present model includes only the FEM and the gross mirror geometries.

It includes neither obstructions nor vignetting by the support structures, the thermal col-

limators or other baffles. We have included no intrinsic HRMA surface error terms, either

high frequency (such as surface micro-roughness) or low frequency (such as sag or mirror

alignment errors). This omission allows us to highlight the structure in the images due to
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the FEM, which, in fact, is a major contributor to the size and shape of the image core.

Furthermore it facilitates direct and detailed comparison with the results of FEMS calculated

by other groups. SAO, in particular, is currently preparing a FEM model of the off-loaded

HRMA at the XRCF and when it becomes available, we will reproduce the results given here

with it. A comparison of the results from the EKC and SAO FEMS will provide an estimate of

the range of X-ray performance expected based on (some measure of) the uncertainty in our

ability to predict the induced gravitational deformations. However, the reader should keep

in mind that the images we present here appear considerably sharper than will be the case

during the actual calibration test and that care should be taken in further interpreting these

results out of the context for which they are intended. We plan to include intrinsic HRMA

surface error terms in one of the next releases of this document.

The FEM is derived from the EKC model current as of 23 September 1993. It incorporates

gravity compensation with off-loading via the CSE off-loading system (off-loading at the

CAP). The EKC NASTRAN (FEM) spans 180 ° (a semi-circle with the diameter vertical) and

was reflected across the vertical axis to create a full 360 ° structure. This was fit by B-splines

using TRANSFIT by M. Freeman (SAO). Because the FEM is symmetric, special care was taken

to ensure that the TRANSFIT spline fit retained this symmetry. This HRMA model does not

include contributions by the fore and aft structures. Future versions will include these, as

well as alignment errors, assembly strain, thermal distortions, epoxy shrinkage, and material

variations. Appendix D lists the locations of the particular files used in this analysis.

The nominal mirror geometry is that denoted by "EK051vs" (Van Speybroeck 1989).

The mirrors are assumed to be coated with Ir, with reflectivities given by Henke (1993). An

index of the models is presented in Table 2.1.

Table 2.1: Model descriptions

Model Description

xrcf EKC 1G, off-load compensated mechanical model, mirror

prescription EK051vs

The X-ray source at the XRCF is modeled as a monochromatic point source at a distance

of 528.74 meters from the HRMA'S entrance aperture. The source provides uniform coverage
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of an annular entrance aperture at the front of the HRMA. Future models will provide a more

realistic polychromatic, spatially resolved, and non-uniformly filling source.

The photons are accumulated at the focal plane by both a "perfect" detector and a

detector similar to the high speed imager (HSI) being developed by sao for the HXDS. The

HSI is modeled as having a Gaussian spatial resolution with a 18 p FWHM, sampled with

6.45 tt square pixels. It is assumed that the collecting area of the HSX is equal to its spatial

extent (i.e., there are no gaps between the pores), and that it has a perfect quantum efficiency.

Future models will include the "dead" gaps between pores, as well as their tilt and hexagonal

spatial distribution.

The location of the focal plane is that denoted as the global optimal focus position as

determined by the SAOsac focus module. This focal position tracks the three dimensional

minimum RMS blur circle of the ray bundle. The detector's imaging surface is assumed to

be perpendicular to the HRMA optical axis. Future editions will explore alternate, more

experimentally relevant descriptions of the focal plane.

Due to the finite distance of the XRCF X-ray source from the HRMA, the minimal annular

entrance apertures required for complete illumination of the paraboloids are somewhat larger

than for an on-axis source at infinity. Off-axis sources enlarge these annuli dramatically.

In a faithful model of the HRMA the entrance apertures would be defined by the thermal

pre-collimator, the forward edges of the mirrors, the finite distance to the source, and the

source's angular extent. In the present study we have simplified this a great deal, and,

to ensure complete illumination, have chosen apertures which are substantially larger than

the actual entrance apertures. Increased sophistication in future models of the HRMA and

XRCF systems will allow us to use more realistic apertures and (as a pleasant side effect)

increase the throughput of our system. Note that the choice of an entrance aperture does

not invalidate any effective area measurements. Table 2.2 compares nominal apertures (i.e.

for an on-axis source at infinity) with those used in these simulations. The contribution of

each shell to the geometrical effective area of the HRMA for an on-axis source at the XRCF is

described in Table 2.3.

Simulated rays were distributed uniformly and randomly over an entrance aperture with

a density of 20 photons/mm 2. This translates into roughly 2 × 106 rays at the focal plane

for the on-axis case.
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Table 2.2: HRMA Entrance Apertures

MP

1

3

4

6

1%/ (mm)

nominal

600.35

483.47

426,85

317.29

Ro (mm)

nominal

612.69

493.41

435,63

323.82

Area (cm 2)

nominal

470.479

305.143

237,869

131.438

R/ (mm)

used

552.47

435,63

379.11

300.00

Ro(mm)
used

612.69

493.41

435,63

323.82

Area (cm 2)

us ed

2204.38

1686.38

1446.74

466.74

Area Ratio

used / nominal

4.69

5.53

6.08

3.55

Table 2.3: Contributions to Geometrical Area for on-axis sources

MP 070Area

1 40.3

3 26.8

4 21.1

6 11.8

In order to minimize the computational burden of these calculations, we model the

probabilistic reflection of photons from the mirrors by assigning each photon a unit weight

at the entrance aperture and multiplying it by the photon's reflection probability at each

surface. Only the weights are used in the analysis of the simulations. Note that we treat

Poisson errors in the standard manner (as the square root of the weights) even though we

utilize non-integral photons.

Table 2.4 indicates the combinations of model and source parameters simulated.

Table 2.4: Simulation parameters

HRMA model Energy Azimuth Elevation

KeV i i

xrcf 0.277 0.0 0.0

xrcf 0.277 0.0 15.0
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3. Data Products

This handbook presents summaries of the data derived from simulations of the HRMA

and HXDS. The data products are presented in Appendix A. A brief analysis of some of the

data is presented in Appendix B. We present results for the performance of individual shells

as well as for the full HRMA.

3.1. General characteristics

3.1.1. Coordinate System

The coordinate system used in this document is that used at the XRCF. We have chosen

the origin of the system such that the x axis is the optical axis of a perfect, distortion free

HRMA. The image of an on-axis object at infinity would thus lie at z = 0, y = 0. x = 0 is at

the front edge of the paraboloids, and increases towards the focal plane, z and y complete

a right-handed coordinate system, with z chosen by convention to be perpendicular to the

local horizon, increasing towards the zenith. Future work will be based upon a coordinate

system based upon fiducial marks machined into the CAP. It is uncertain at press time what

the relationship between that system and the one used here will be.

3.1.2. Focal Plane positions

The optimal focus position is determined independently for each of the shells and the full

HRMA. The axial positions differ for each of these cases, being relatively similar for on-axis

sources, but varying dramatically off-axis. The global optimal focus for the HRMA in the

off-axis case is essentially a weighted average of all four shells, and thus the image is less well

focussed than are those of the individual shells. As the shells' effective areas vary with the

incident photons' energies, the focal position for the HRMA also changes with energy.
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3.1.3. Image Centers

Several of the data products are radially averaged quantities and are thus sensitive to

the determination of the center of the focal plane ray distribution. As with any asymmetric

distribution, the definition of its center may be ambiguous. Here we distinguish between the

operational definition of a center and its desired properties. For example, one can define the

_,i yiwi (3.1a)
Yc -- _i wi

_i ZiWi (3.15)
Zc _- Ei Wi

• the iterat i 'ely clipped center. This is determined by calculating the centr0id of

a sample of the rays whose distance from an initial center is less than a given

multiple of the standard deviation of the distance for the entire set of rays. This

process is repeated, using the newly determined center as the basis for the next

iteration, until the change in the center is less than some tolerance.

• an experimental center, which can be determined experimentally (using pin-holes,

for instance) at the XRCF.

The resultant center may not correspond to what is probably the desired center, the peak or

"modal location" of the distribution, for a number of reasons.

In the case of an on-axis source, the resultant focal plane distribution is quite peaked,

but asymmetries due to gravity (even after compensation) and dust or high frequency mirror

errors may produce substantial tails in the distribution which result in large lever arms in

Eq. (3.1), shifting the centroid. Off-axis sources are (by definition, but also practically) not

in focus; the central peak is muted and may indeed be non-existent, given a large enough

off-axis deviation.

Our initial attempt at determining the center uses the clipped centering algorithm. Our

current implementation has not shown itself to be more capable at locating the peak than

the centroid. (See Table A.1 for a quantitative comparison.) Not much effort has so far been

lavished upon this, as the analyses we present here are not critically dependent upon the

center. Future efforts will concentrate upon determining the limitations of this method, as

algorithm for determining the center in one of the following manners:

• the centroid
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well as defining algorithms which fall in the last of the above categories, namely those which

are readily determined experimentally at the XRCF.

3.2. Specific Products

3.2.1. Grayscale Images

We present two sets of grayscale images. One shows the photon weight distribution

binned in relatively small bins (1# for on-axis images, 10# for off-axis images), the other

that imaged by our model HSI. In both cases the logarithm of the summed photon weights

is shown.

3.2.2. Fractional Encircled Energy

The fraction of the total energy within a circular region is determined by binning the

photons in annuli with widths of 0.1 #. Image centers are determined using the clipped

center algorithm of §3.1.3. The plots indicate results based upon these centers as well as

centers offset by 1 # in the cardinal directions. We have tabulated values of the encircled

energy at radii of interest to the HXDS science staff.

3.2.3. HSI photon sampling

The relative distribution of photon weights per pore of the Hm was determined assuming

8# diameter circular pores accumulated on a 150 × 150 square grid with 10# spacing. These

22,500 pixels span a full width of roughly 30" and the grid was approximately centered on the

determined image center. The number of pores with relative flux greater than or equal to f

was plotted versus relative photon flux, f. It was found that this, the log N-f curve, varied

considerably depending on the exact relative positioning between the HSI pore grid and the

simulated X-ray image, presumably due to the highly structured nature of the underlying

image. In order to include this variation in our results, we ran 100 separate realizations

varying the absolute center of the pore grid in 1# steps in both the y- and z-direction. From
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these 100 log N-f curves were determined the mean curve, the mean plus and minus 1 cr

curves, and the curves defining the minimum and maximum envelopes. These calculations

were time-consuming and required a lot of disk space (about 50 Mb), so we only carried

them out for the full HRMA models.

3.3. Use of Products

In most cases the use of a data product is obvious, however in some cases it is not. Below

we describe the use of the HSI photon sampling log N-f curve.

3.3.1. HSI photon sampling logN-f curve

During XRCF calibration, the total count rate capability of the HSI will be limited by the

desire to avoid count rate saturation in individual pores of the device. The logN-f curve

allows us to estimate the number of pores which would be saturated for a given total HSI count

rate. Alternatively one can set limits on the total allowed HSI rate so that a certain limited

number of pores would be saturated. Let us examine Fig. A.16. For simplicity we assume

that saturation occurs at a rate, Rs, of 1 count s -1 pore -1. Suppose that we wish to avoid

saturating even a single pore. Then we read off the figure that the single brightest pore has a

maximum relative photon flux, f, of ,,_0.065. In order to avoid saturating this pore, the total

HSI rate must be less than Rs/f "-' 1/0.065 ,-_ 15 s -1. If we allow the number of saturated

pixels to be ,,_10, then the total HSI rate can be larger: R..,c/f _ 1/0.013 ,,_ 77 s -1. This result

depends sensitively on the detailed image morphology. For the off-axis case (Fig. A.32), one

can avoid saturating any pore for a total count rate even as high as roughly 500 s -1, assuming

the same value of Rs as used above. Clearly we need to increase the fidelity of our HRMA

model (by including mirror surface imperfections, alignment errors, etc.) before the log N-f

curve can be used confidently as a detailed planning tool for calibration observations. With

this goal in mind, we also intend to produce log N-.f curves with parameters appropriate to

the ACIS CCDs.
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4. Simulation System

The philosophy we have embraced in the implementation of the software suite used to

create the raytraces and perform the subsequent data analyses is to deconstruct the tasks

required into simple atomic processes. Each process is then implemented as an individual

C, FORTRAN, or per1 program which communicates with other elements of the system via

UNIX pipes. The photons appear as a stream of data, with each program acting as a filter

(in the UNIX sense), working on one photon at a time, passing it along to the next program

for further processing. The advantages of this approach are many. Modules can be inserted

into the photon stream with ease, and development of new modules or changes to existing

ones can be made without the fear of breaking other modules. The data interface is very

simple and standard, which makes writing new modules straightforward. Additionally, there

is no inherent limit to the number of photons that can be processed in such fashion, although

individual analyses may run into limits (e.g., an iterative centering algorithm which must

re-read the entire photon stream for each iteration).

At present we rely upon default system buffering to reduce the overhead of passing data

through the system one ray at a time. Planned improvements include the use of shared

memory to communicate between programs running on the same machine, as well as sockets

to pass data between different machines. In this paradigm it is difficult to provide feedback

from the end of the data stream to the beginning of the stream; we are investigating ways

of providing this facility.

In order to tie the individual programs into a cohesive system, a "meta" language is

required to choreograph them. This is usually accomplished on UNIX systems by using a

"shell" program. A shell is a program which provides a convenient interface allowing a user

to issue commands to the system and manipulate the administration of those commands

and any output they may produce. Shells provide additional utility by implementing simple

interpretive languages which users can use to automate tasks. We have chosen to use a utility,

perl, which provides a much richer interface to the system and better process control than

do the traditional shells. It differs from these as well in that it is relatively self-contained,

providing the facilities of a large number of UNIX utilities. This eases multi-platform support
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of our simulation system, as it provides a consistent level of support, independent of the

vagaries of the underlying flavor of UNIX.

The suite of software used in this effort includes the following modules:

• a ray generator (raygen)

• aperture models simulating annular openings (ap)

• ray reflection (ray tracing) (SAOsac)

• spatial distortion (e.g., Gaussian detector spatial response) (blur)

• spatial binning (spatquant)

• center detection and annular binning of the photons (radprof)

• pinhole scan simulator (pinhole)

• various other support routines

• compile encircled energies for particular apertures and generate TEX,

LATEX, TEXsis, and straight ASCII tables (enen-ap)

• convert binned photons to PSF's and encircled energy curves (prof2enen,

profnorm)

• grayscale plots (imageplot)

These are tied together in various guises by perl programs to form particular tasks.

Fig. 4.1 presents an overview of the system; a more detailed description follows.

The top level perl scripts used are as follows:

pipe-plex

pipe-plex is the highest level script and determines the source of rays to be

processed (either from a file or from the ray generator), merges the individual

shells into a full HRMA, if necessary, and sends the photons for processing to

hdbk-process.

hdbk-process

this script acts as a dispatcher for the rays passed to it by pipe-plex, di-

recting them in turn to a suite of analysis scripts.

psfenen
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Figure 4.1: A graphical representation of the simulation software.
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this script takes a stream of photons, determines the center of the photon

distribution at a focal position, and generates azimuthally averaged PSF and

encircled energy distributions.

pin-hist

this script passes the photons through a grid of circular apertures, simulating

pinhole flux measurements at the focal plane

hdbk-gray

this generates grayscale images of the photon distribution at a particular

focal plane.

hdbk-hsi-gray

this generates grayscale images of the photon distribution at a particular

focal plane as seen by a simulated HSI.

There are several other subsidiary scripts (for example, the HSI model is a script which

ties together a Gaussian blurring program and a spatial quantizing program) that perform

analyses, as well as generating the input files for the plotting programs used to generate the

graphical representation of the data. Each of these scripts or programs may be used outside

of the hierarchy, as well.

It is imperative that all of the particulars of a data product be stored so that different

tasks can manipulate it without requiring the human operator to act as a communications

bridge between them. As each analysis is completed, its particulars are stored in a database,

minimizing to a great extent transcription errors.
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A. Data Products

Table A.1 presents the positions of the centers and centroids of the simulations. In this

case center refers to the iterative clipping method, and centroid is the center of weight.

Data for each combination of simulation parameters (as outlined in Table 2.4) are pre-

sented in the following tables and figures. Data sets are presented in the order MP1, MP3,

MP4, MP6, HRMA, comprising the following products:

1. A logarithmically scaled focal plane image. This is binned at 1 # for on-axis

images, 10 # for off-axis images.

2. A logarithmically scaled focal plane image as seen by the HSI.

3. A fractional encircled energy diagram. Four curves are plotted, for the different

shifted centers. The centers are indicated on the plot.

4. For the complete HRMA only: HSI photon sampling log N-f curves showing the

number of 8/_ pores with flux greater than (or equal to) f versus the relative

photon flux, f. Five curves, summarizing the 100 realizations, are shown. The

left- and right-most curves are the minimum and maximum envelopes, the middle

curve is the mean and the dashed curves are the mean plus and minus 1 a curves.

Summary tables are presented after the data for HRMA:

1. A table of encircled energy fractions at interesting radii. The focal position s for

each MP is presented at the top of the table.
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Table A.I: Simulation Characteristics

I Model Energy Elevation

(keY) (')

xrcf 0.277

xrcf 0.277

xrcf 0.277

xrcf 0.277

xrcf 0.277

xrcf 0.277

xrcf 0.277

xrcf 0.277

xrcf 0.277

xrcf 0.277

0.0

0.0

0.0

0.0

0.0

15.0

15.0

15.0

15.0

15.0

Azimuth

(')
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Shell

1

3

4

6

iHRMA

1

3

4

6

HRMA

Focus

(mm)

11130.9

11131.0

11131.1

11131.2

11131.0

11121.7

11117.3

11113.7

11100.6

11118.6

Centroid

y (mm) z (mm)

-0.0000 -0.0233

-0.0000 -0.0251

+0.0000 -0.0247

-0.0000 -0.0263

-0.0000 -0.0245

+0.0001 +44.5041

-0.0001 +44.4907

+0.0003 +44.4818

+0.0006 +44.4388

+0.0000 +44.4999

Center

y (ram) z (mm)

-0.0000 -0.0234

-0.0000 -0.0251

+0.0000 -0.0247

-0.0000 -0.0263

-0.0000 -0.0245

+0.0001 +44.5041

-0.0001 +44.4909

+0.0003 +44.4820

+0.0006 +44.4389

+0.0000 +44.4999



Data Products 17

N

o

O
Lf)

O

O
tf)

I

o
O

I

o

I

xrcf shell(s)1 @0.277keY, 20 phot/mm 2 el:O.O" oz:O.O"

focus'11150.gmm detector:none bin size:l.0_
-' ' ' ' I ' ' ' ' I ' ' ' ' I .... I ' ' ' ' ] ' ' '

, , , ; I I I , i I I , , , I , ; i ; I , l i i I ; , l

-100 -50 0 50 100

Figure A.I:



18 Data Products

I....d

N

O
o
r...-

o
if3

o

o
t.f3

I

o
O
r---

I

o
Lf)
r-...-

I
I

xrcf shell(s):1 @0.277keY, 20 phot/mm 2 el:O.O" oz:O.O"

focus:11130.9mm detector:hsi

' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' f ' I ' '

i

I , i 1 I , , , I J J J J I I i , , I J , J A I I , , ,

-100 -50 0 50 100

Figure A.2:



Data Products 19

0.8

0.6
0

o

_9

0.4

0.2

0
0.1

Encircled Energy

I I I I I I I I I I

shell(s): 1
energy: 0.277 [keV]
azimuth: 0.0'
elevation: 0.0 °
focus: 11130.9 [mm]
detector: none

photon count: 890155
photon weight: 657961.00

-0.0,-23.4) Ix
....... +1.0, -23.4)

-o.o,-22.4)
-1.0, -23.4)
-0.0, -24.4)

I I I I I I T I

i0

Radius (microns)

100

Figure A.3:



20 Data Products

N

O
O

O

O

O
u'3

O
O
,¢...,.-

I

O
t.f3
,¢....-

I

xrcf shell(s)5 @0.277keV, 20 phot/mm 2 elO.O" oz:O.O"

focus:l 1 1.51.0mm detector:none bin size'l .Olz
' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' r , , I _ _ '

-100 -5O 0 5O IO0

y

Figure A.4:



Data Products 21

N

O
o
,r'--

O
t/3

O

O
t.t-)
i

O
o
r---

t

o
ta'5
x'--

xrcf shell(s):5 @0.277keV, 20 phot/mm 2 el:O.O" oz:O.O"

focus:11151.0mm detector:hsi

, , , , I , , , , I , i , , I , , , , I , , J , I , , J ,

-100 -50 0 50 100

Figure A.5:



22 Data Products

0

c9

k_

q)

0.8

0.2

0
0.I

Encircled Energy

shell(s): 3 .
energy: 0.277 [keV] J "
azimuth: 0.0' / _
elevation: 0.0' / -
focus: 11131.0 [ram] /r _
detector: none
photon count: 591301 ] _
photon weight: 463681.38
image centers: ! -

-- ( -o.o,-2S.lt [.] / _
....... ( +1.0, -25.1P [/zJ 1 -

-- ( -o.o, -z4.11 t_J ]
-- ( -1.0, -25.1 i [/zJ I -
.... ( -0.0, -z6.1_ [_j

7 f//'
I I I I 1 I I I l I :_ ' I I I I I 1 I I I I I I ' '1

1 10 100

Radius (microns)

Figure A.6:



Data Products 23

t"--'l

N

o
O
,¢...-

o
t.f3

o

o
t.rb

I

o
o
r.--

I

O
t.r3

xrcf shell(s):4 @0.277keY, 20 phot/mm 2 el:O.O" az:O.O"

focus'l 11.31 .lmm detector:none bin size:l .Ot.z

J J , , I I _ , i I J J , I I , l i , I , , , , I , , , ,

-100 -50 0 50 100

Figure A.7:



24 Data Products

N

O
O

O
t_

O

O

I

O
O

I

O

xrcf shell(s):4 @0.277keY, 20 phot/mm 2 elO.O" az:O.O"

focus:ll151.1mm detector:hsi

' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' '

-100 -50 0 50 100

y

Figure A.8:



Data Products 25

0.8

0.6
o

o

_9

_z 0.4

0.2

0
0.i

Encircled Energy

' ' ' ''' ''1 .... '' ''1 .....
shell(s): 4 .

energy: 0.277 [keV] /
azimuth: 0.0 i
elevation: 0.0'
focus: 11131.1 [mm]
detector: none
photon count: 464906 ]
photon weight: 375132.26
image centers: , _-
-- ( +0.0, -24.7 [.]
....... ( +1.0, -24.7 I/z] _-

_ +o.o,-23.v [u]
" " ( -1.0, -24.7 [;z] _-

- ( +o.o, -25.7 bz] / _

ti
II'

r/'r/

1 10 100

Radius (microns)

Figure A.9:



26 Data Products

k.....J

N

,v--"

O
t..f3

o

c)
t.t3

i

o
o
v-'--

I

o
Lf')
x-"-

xrcf shell(s):6 @0.277keV, 20 phot/mm 2 el:O.O" oz:O.O"

focus:111.31.2mm detector:none bin size:l.0/_z
' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' '

°

-100 -50 0 50 100

y

Figure A.IO:



Data Products 27

N

O
o
1--,--

o
d)

O

O
u')

r

O
o
T---

I

o
t/b
v---

xrcf shell(s):6 @0.277keY, 20 phot/mm 2 elO.O" ozO.O"

focus:l1151.2mm detector:hsi
r , , t .... [ ' ' ' ' I .... I .... I ' ' '

, , , , I L I I k I I i t I I i i I i I i , _ i I i _ l J

-100 -50 0 50 100

Figure A.11:



28 Data Products

0.8

z_ 0.6
o

0.4

0.2

0
0.1

Encircled Energy

I I I I I I I I I I

shell(s): 6
energy: 0.277 [keV]
azimuth: 0.0 '
elevation: 0.0'
focus: 11131.2 [ram]
detector: none
photon count: 261329
photon weight: 222830.77

-0.0,-26.3) /_
...... +1.0, -26.3)

-00,-25.3)
-1.0, -26.3_
-0.0, -27.3)

I I I I I I I ]

l I I l I I I l

I

!

J
I0

Radius (microns)

l 1 I I I

I I I I I I I I I

100

Figure A.12:



Data Products 29

zt.
i....J

N

o
o
v..--

o
to

O

o
to

[

o
O

I

o
to
T--

xrcf shell(s)1546 @0.277keY, 20 phot/mm 2 el:O.O" oz:O.O"

focus:11131.0mm detector:none bin size:l.0/__

-100 -50 0 50 100

y

Figure A.13:



30 Data Products

N

o
0

0
t.f3

o

o

I

o
o

I

0
t.f5
x'--

I

xrcf shell(s):1.346 @0.277keY, 20 phot/mm 2 el'O.O" oz:O.O"

focus'11131.0mm detector:hsi

lli,l,,Lil,,,,l,,,Jllil,II,i,

-100 -50 0 50 100

y

Figure A.14:



Data Product, s 31

0.8

0,6
0

>,

0.4

0.2

0
O.

Encircled Energy

I I I I I I I I I I

shell(s): 1346
energy: 0.277 [keV]
azimuth: 0.0'
elevation: 0.0 '
focus: 11131.0 [mm]
detector: none

photon count: 2207691
photon weight: I719605.41

imag_ center:-o.o,-24.5)

I I 1 l I l I I [

1
-_----W', , ,, ,,I

10

Radius (microns)

I

I I I l I I I I I

I00

o Figure A.15:



32 Data Products

0
az 102

r_

L
Q)

Q)

X

"_ 101

o

E

I , i i I I I I I I

shell(s): 1346
energy: 0.277 [keV]
azimuth: 0.0 '
elevation: 0.0 '
focus: 11131.0 [ram]
photon count: 2207691
photon weight: 1719605.41
pore size: 8.0 [/_]
pore spacing: 10.0 [/z]
pore grid size: 150 x150
realization offset: 1.0 [/z]
no. realizations: 100

l I I I I

0.02 0.04

relative photon flux

, , , I i
0.06

Figure A.16:



Data Products 33

Table A.2: Encircled energy fractions for:
xrcf @ 0.277KeV; Azimuth: 0.00', Elevation: 0.00'

radius (mm) shell 1 shell 3 shell 4 shell 6 HRMA

(focus (mm)) (11130.9) (11131.0) (11131.1) (11131.2) (11131.0)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.060

0.070

0.080

0.090

0.100

0.150

0.200

0.03333

0.12797

0.24560

0.34262

0.44806

0.56922

0.71907

0.80757

0.86336

0.91267

0.95772

0.97224

0.98254

0.98880

0.99286

0.99992

1.00000

0.04341

0.16785

0.27945

0.39066

0.54148

0.70775

0.79929

0.86228

0.90960

0.92762

0.95251

0.96689

0.97610

0.98338

0.98820

0.99828

1.00000

0.05383

0.19021

0.33260

0.51553

0.68377

0.77405

0.83484

0.90212

0.93943

0.95200

0.96994

0.98024

0.98732

0.99126

0.99435

0.99969

1.00000

0.02941

0.14314

0.42522

0.62833

0.74195

0.81039

0.86089

0.92531

0.96209

0.97310

0.98497

0.99064

0.99400

0.99636

0.99769

0.99997

1.00000

0.03636

0.14158

0.27135

0.40199

0.55937

0.71006

0.79858

0.85304

0.89145

0.92003

0.96106

0.97480

0.98279

0.98856

0.99246

0.99946

1.00000
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Table A.3: Encircled energy fractions for:
xrcf @ 0.277KeV; Azimuth: 0.00', Elevation: 15.00'

radius (mm) shell 1 shell 3 shell 4 shell 6 HRMA

(focus (mm)) (11121.7) (11117.3) (11113.7) (11100.6) (11118.6)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.060

0.070

0.080

0.090

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0.550

0.600

0.650

0.700

0.750

0.800

0.850

0.900

0.950

1.000

1.500

2.000

0.00032

0.00129

0.00297

0.00530

0.00817

0.01193

0.01668

0.02194

0.02754

0.03439

0.05164

0.07258

0.09807

0.13211

0.17252

0.29947

0.41039

0.52201

0.62177

0.71466

0.79890

0.86323

0.91523

0.95010

0.97360

0.99457

1.00000

1.00000

1.00000

1.00000

1.00000

1.00000

1.00000

1.00000

1.00000

0.00028

0.00108

0.00231

0.00407

0.00641

0.00948

0.01305

0.01778

0.02370

0.03047

0.04275

0.05681

0.07795

0.10426

0.13535

0.24880

0.34459

0.43368

0.51620

0.59862

0.67861

0.75394

0.82567

0.88265

0.92658

0.95252

0.97418

0.98922

0.99842

1.00000

1.00000

1.00000

1.00000

1.00000

1.00000

0.00022

0.00087

0.00191

0.00336

0.00548

0.00805

0.01105

0.01442

0.01887

0.02365

0.03442

0.04687

0.06607

0.09034

0.12097

0.22424

0.31592

0.39511

0.47088

0.54236

0.61802

0.68951

0.75741

0.82353

0.88016

0.92481

0.94919

0.96773

0.98136

0.99112

0.99754

0.99990

1.00000

1.00000

1.00000

0.00008

0.00060

O.00137

0.00228

0.00373

0.00540

0.00757

0.00993

0.01268

0.01578

0.02332

0.03285

0.04770

0.06459

0.09656

0.17642

0.24773

0.31698

0.37780

0.43941

0.49932

0.56049

0.62026

0.67453

0.72789

0.78136

0.83537

0.88362

0.91961

0.94402

0.95616

0.96579

0.97407

1.00000

1.00000

0.00019

0.00070

0.00153

0.00274

0.00433

0.00635

0.00876

0.01167

0.01522

0.01914

0.02879

0.04384

0.06703

0.09224

0.11880

0.22874

0.32453

0.41084

0.49334

0.56942

0.64956

0.72188

0.77923

0.82460

0.86304

0.89209

0.91527

0.93005

0.94273

0.95292

0.96065

0.96724

0.97306

0.99606

1.00000
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B. An Analysis of Image Structure

p&_ _AI_( _ F_,LMEIO

While much of the detail in the images presented in Appendix A will not be resolved

at the XRCF, it is still important to understand its origin. We present here an analysis of

the raytrace through MP6, which shows most clearly the results of what we believe to be an

effect common to all of the mirror pairs.

Fig. A.10 shows an image of the rays at best focus for the finite source distance at the

XRCF. rio remove the effect of the source distance, a raytrace with the source at infinity was

run; the image is shown in Fig. B.1. The "wing like" patterns arise from distortions in the

glass due to the bonded mirror supports. A more substantial discussion of these involves a

thorough review of the detailed mechanical model and is not carried out here. The structure

resembling a lima_on is similar to that seen in an out of focus image of a mirror pair with

a relative tilt between the hyperboloid and the paraboloid. An illustration of the effects of

such a tilt upon images is shown in Fig. B.2. In this instance a set of perfect paraboloidal

and hyperboloidal mirrors with a 1 second of arc relative tilt and a source at infinity were

raytraced; the images at best focus as well as at various out of focus axial positions are

shown in the figure. For comparison, Fig. B.3 shows the raytrace illustrated in Fig. B.1 at

a axial position lmm in front of the best focus. Note that while a "tilt loop" is indeed in

evidence, there is a second ring which can be shown to have the same "tilt loop" structure

when projected to another axial location.

The presence of two "tilt loops" is somewhat surprising, as only one is expected from

the geometry. The key to the mystery is that the mirrors are not acting as rigid bodies,

but are in fact sagging about the plane containing the bonded mirror support pads. This

sagging results in the front and back halves of each mirror acting essentially as independent

pieces of glass; there are thus two relative tilts - between the front of the paraboloid and the

back of the hyperboloid as well as between the back of the paraboloid and the front of the

hyperboloid - and thus two resultant tilt lima_ons. A clearer illustration of this is shown in

Fig. B.4 which shows spot diagrams of the rays which are incident upon the back, middle,

and front of the paraboloid.
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Figure B.2: The effect of a relative tilt upon out of focus images
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C. Glossary

AXAF The Advanced X-ray Astronomical Facility

CAP Central Aperture Plate - the plate to which the mirror support
sleeves are attached

EKC Eastman Kodak Company

FEM Finite element model

FEA Finite element analysis

FWHM Full-Width at Half Maximum

GSE Ground Support Equipment

HRMA High Resolution Mirror Assembly - the combination of the mirrors,
their support structures, and the fore- and aft- structures.

HSI High Speed Imager - a micro-channel plate based detector to be
used at the XRCF to test the HRMA.

HXDS HRMA X-ray Detector System

MP Mirror Pair - a pair of paraboloidal and hyperboloidal mirrors

which make up one of the four nested shells of AXAF.

MSFC Marshall Space Flight Center

MST Mission Support Team

NASTRAN Commercial FEA code

SAOsac SAO'S updated version of OSAC's drat routine, which includes B-

spline optic deformations as well as improved i/o performance via
UNIX pipes.

OSAC Optical Surface Analysis Code - a ray tracing code capable of deal-

ing with grazing incidence optics and deformed optics, developed
at: Perkin-Elmer for NASA.

perl Practical Extraction and Report Language - a language designed

to easily manipulate text and databases. It provides a superset of

the functionality of the UNIX tools awk, sed, and grep, as well as
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PSF

SAO

TBD

TRANSFIT

UNIX

VETA-I

XRCF

providing easy access to UNIX kernel functions and inter-process-
communications.

Point Spread Function

Smithsonian Astrophysical Observatory

To Be Determined

GUI-driven software for fitting continuous surface functions to FEA

data of cylindrical optics.

A multi-user, multi-tasking (and possibly multi-processing) oper-
ating system.

Verification Engineering Test Article I - the pre- end cut para-

boloidal and hyperboloidal mirrors which make up AXAF's outer
mirror shell.

X-Ray Calibration Facility - the facility at MSFC where the HRMA
will be calibrated.
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D. FEM files

The mechanical model used by these simulations is parameterized as a set of B-splines.

The coefficients can be found in the directory

Iproj laxaflSyseng/models/hrma-xrcf/IG/offloaded/EKC as

> hrma-xrcf_pl. SPL

_>hrma-xrcf_hl. SPL

t>hrma-xrcf_p3. SPL

t>hrma-xrcf_h3. SPL

t>hrma-xrcf_p4. SPL

c>hrma-xrcf_h4. SPL

t>hrma-xrcf_p6. SPL

t>hrma-xrcf_h6. SPL

These fileswere derived from the Kodak FEA model output hrma-xrcf, pch, transferred

to SAO on 23 September, 1993.
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